

Departamento de Matemáticas y Estadística Ecuaciones Diferenciales

Taller 2

17 de marzo de 2025

- 1. Resolver los siguientes ejercicios del texto guía. Allí se indica primero la Sección y después de los dos puntos los ejercicios sugeridos:
 - a) 4.1: 9-11, 15-36.
 - b) 4.2: 1-22.
 - c) 4.3: 1-36.
 - d) 4.6: 1-28, 32.
 - e) 5.1: 1-7, 21-45, 49-62.
- 2. En los siguientes problemas determine si las funciones dadas forman un conjunto fundamental de soluciones de la ecuación diferencial en el intervalo I que se indica. Forme la solución general de la ecuación diferencial.
 - a) $x^2y'' + xy' + y = 0$; $y_1 = \cos(\ln x)$, $y_2 = \sin(\ln x)$, $I = (0, \infty)$.
 - b) $x^3y''' + 6x^2y'' + 4xy' 4y = 0$; $y_1 = x$, $y_2 = x^{-2}$, $y_3 = x^{-2} \ln x$, $I = (0, \infty)$.
 - c) $-6x^3y''' 7x^2y'' xy' + y = 0$; $y_1 = x$, $y_2 = x^{1/2}$, $y_3 = x^{1/3}$, $I = (0, \infty)$.
 - d) $y^{(4)} + y'' = 0$, $y_1 = 1$, $y_2 = x$, $y_3 = \cos x$, $y_4 = \sin x$, $I = (-\infty, \infty)$.
- 3. En los siguientes ejercicios la función dada $y_1(x)$ es una solución de la ecuación homogénea dada. Use al fórmula de reducción de orden para encontrar una segunda solución $y_2(x)$.
 - a) $(1-2x-x^2)y'' + 2(1+x)y' 2y = 0$, $y_1 = x+1$.
 - b) $x^2y'' xy' 3y = 0$, $y_1(x) = x^3$.
 - c) $(x^2 + 1)y'' 2xy' + 2y = 0$, $y_1(x) = x$.
 - d) $x\frac{d^2y}{dx^2} (x+3)\frac{dy}{dx} + 3y = 0$, $y_1(x) = e^x$.
 - e) $(x^2 1)y'' 2xy' + 2y = 0$, $y_1(x) = x$.
 - f) $(x^4 x^2)y'' (3x^3 x)y' + 8y = 0$, $y_1(x) = x^4$.

- g) $(x^4 + x^2)y'' (x^3 x)y' 4y = 0$, $y_1(x) = x^2$.
- h) $y'' (2\tan x)y' + 3y = 0$, $y_1(x) = \sin x$.
- i) $(x^2+1)^2y''-4x(x^2+1)y'+(6x^2-2)y=0$, $y_1(x)=x^2+1$.
- 4. En cada caso encuentre la solución general de la ED y resuelva el PVI. Allí k representa una constante real positiva.
 - a) y'' + 4y' + 5y = 0 con y(0) = 2, y'(0) = 0.
 - b) 2y'' 4y' + 3y = 0, y(0) = 0 y y'(0) = 1.
 - c) y'' 5y' 14y = 0, y(0) = 2 y y'(0) = 1.
 - d) y'' 10y' + 25y = 0, $y(1) = e^5$ y y'(0) = 2.
 - e) 3y'' 7y' 6y = 0, y(0) = 2 y y'(0) = 1/3.
 - f) 4y'' 10y' + 25y = 0, y(0) = 2 y y'(0) = 1/2.
 - g) $y'' + k^2y = 0$, y(0) = 1 y y'(0) = 2.
 - h) $y'' k^2 y = 0$, y(0) = 1 y y'(0) = 2.
- 5. Halle la solución general de
 - a) 2y''' y'' + 18y' 9y = 0.
 - b) y''' 2y'' 2y' 3y = 0.
 - c) y''' 2y'' 3y' = 0.
 - d) $y^{(4)} + 4y''' + 6y'' + 4y' + y = 0$.
 - e) $y^{(4)} 16y = 0$.
 - f) $y^{(4)} + 4y''' + 8y'' + 8y' + 4y = 0$. (Resp/ $y = e^{-x}[(c_1 + c_2x)\cos x + (c_3 + c_4x)\sin x]$).
 - $y^{(6)} + 8y^{(4)} + 16y'' = 0.$
- 6. Halle la solución de las siguientes ecuaciones usando el método de variación de parámetros.
 - a) $y'' + 4y = \sec 2x$.
 - b) $y'' y = \sec^3 x \sec x$.
 - c) $y''' 2y'' y' + 2y = e^{4x}$
 - d) $y''' 7y'' + 14y' 8y = \ln x$.
 - e) $y''' + y' = \tan x$
- 7. Resuelva las ecuaciones de Cauchy-Euler.
 - a) $4x^2y'' + 4xy' y = 0$.
 - b) $2x^2y'' + 5xy' + y = x^2 x$.
 - c) $x^2y'' + xy' y = \frac{1}{x+1}$.
- 8. Una masa que pesa 24 libras, unida al extremo de un resorte, lo alarga 4 pulgadas. Al inicio, la masa se libera desde el reposo en un punto 3 pulgadas arriba de la posición de equilibrio. Si x(t) representa la posición de la masa, respecto a la posición de equilibrio, en el instante de tiempo t, entonces:

- a) formule el problema de valor inicial que describe el movimiento de la masa.
- b) Encuentre la ecuación del movimiento x(t). Resp/ $x(t) = -\frac{1}{4}\cos 4\sqrt{6}t$.
- 9. Después que una masa de 10 libras se sujeta a un resorte de 5 pies, éste llega a medir 7 pies. Se retira la masa y se sustituye con una de 8 libras. Luego se coloca al sistema en un medio que ofrece una fuerza de amortiguamiento igual a la velocidad instantánea. Si w(t) representa la posición de la masa, respecto a la posición de equilibrio, en el instante de tiempo t, entonces:
 - a) formule el problema de valor inicial que describe el movimiento de la masa, si esta se libera inicialmente desde el reposo de un punto situado a 0.5 pies arriba de la posición de equilibrio con una velocidad ascendente de 1 pies/s.
 - b) Encuentre la ecuación del movimiento w(t). Resp/ $w(t) = e^{-2t}(\frac{1}{2}\cos 2t + \frac{1}{2}\sin 2t)$.
- 10. Una masa que pesa 16 libras alarga 8/3 pies un resorte. La masa se libera inicialmente desde el reposo desde un punto 2 pies abajo de la posición de equilibrio y el movimiento posterior ocurre en un medio que ofrece una fuerza de amortiguamiento igual a 0.5 veces la velocidad instantánea. Además, sobre la masa actúa una fuerza externa igual a $f(t) = 10\cos 3t$. Si y(t) representa la posición de la masa, respecto a la posición de equilibrio, en el instante de tiempo t, entonces:
 - a) formule el problema de valor inicial que describe el movimiento de la masa.
 - b) Encuentre la ecuación del movimiento y(t). Resp/ $y(t) = e^{-t/2} \left[-\frac{4}{3} \cos(\frac{\sqrt{47}}{2}t) \frac{64}{3\sqrt{47}} \sin(\frac{\sqrt{47}}{2}t) \right]$.
- 11. Una masa de 1 slug está unida a un resorte cuya constante es de 5 lib/pie. Al inicio la masa se libera 1 pie abajo de la posición de equilibrio con una velocidad descendente de 5 pies/s y el movimiento posterior toma lugar en un medio que ofrece una fuerza de amortiguamiento de igual a 2 veces la velocidad instantánea. Además, sobre la masa actúa una fuerza externa igual a $f(t) = 12\cos 2t + 3\sin 2t$. Si s(t) representa la posición de la masa, respecto a la posición de equilibrio, en el instante de tiempo t, entonces:
 - a) formule el problema de valor inicial que describe el movimiento de la masa.
 - b) Encuentre la ecuación del movimiento s(t). Resp/ $s(t) = e^{-t} \cos 2t + 3 \sin 2t$.
- 12. Se aplica una fuerza electromotriz de E(t) voltios a un circuito RLC en serie con R ohmios de resistencia, L henrios de inductancia y C faradios de capacitancia. Determinar la carga q(t) en el capacitor y la corriente i(t) si:
 - $i) \ q(0) = 0, \ i(0) = 0, \ L = 1, \ R = 20, \ C = 0,002 \ y \ E(t) = 12.$
 - ii) q(0) = 0, i(0) = 0, $L = \frac{1}{2}$, R = 3, $C = \frac{1}{4}$ y $E(t) = 5\cos(2t) 2e^{-2t}$.
 - i) q(0) = 5, i(0) = 0, L = 0.05, R = 2, C = 0.001 y E(t) = 0. Determine la primera vez en que la carga del capacitor es igual a cero.
- 13. Encuentre la corriente transitoria y de estado estable en un circuito serie RLC cuando L=1/2, R=20, C=0,001 y $E(t)=200\cos(20t)$.