2 Parcial de Física Calor Ondas Universidad del Norte

ı		
	_	

Nombre: ______ NRC: _____ Marzo 25 de 2019

Lea todo el examen antes de comenzar. El uso de celular no está permitido. En caso de encontrar un celular encendido, su examen será anulado.

Problema 1. Una máquina térmica opera con 2 moles de helio gaseoso empleando el ciclo descrito con los siguientes procesos: $a \rightarrow b$ proceso isocórico; $b \rightarrow c$ es isotérmico a 327 °C; $c \rightarrow a$ isobárico. $V_C = 0,099768 \text{ m}^3$. La presión en los estados a y c es de $1.00 \times 10^5 \text{ Pa}$, y en el estado b, de $3.00 \times 10^5 \text{ Pa}$.

- a) Haga un diagrama PV de los procesos, valor 0,3 ptos.
- b) ¿Cuánto calor entra en el gas y cuánto sale del gas en cada ciclo? valor 0,4 ptos
- c) Determine la temperatura fría y la eficiencia máxima que puede lograrse. valor 0,4 ptos
- d) Determine el cambio de entropía en los procesos bc y ca. valor 0,4 ptos

Problema 2. Imagine que como ingeniero le piden diseñar una **máquina de Carnot** que use como sustancia de trabajo 2 moles de un gas diatómico con comportamiento ideal y que funcione con una fuente caliente a 350 °C. La máquina debe levantar 2 m una masa de 15 kg en cada ciclo, empleando un suministro de calor de 700 J. a) ¿A qué temperatura debe estar la fuente fría? **valor 0,3 ptos** b) El gas en la cámara de la máquina puede tener un volumen mínimo de 5 L durante el ciclo, calcule la presión máxima que tendrá que resistir la cámara de gas. **valor 0,3 ptos** c) Dibuje un diagrama *pV con los valores conocidos* para este ciclo, indicando dónde entra calor en el gas y dónde sale de él. **valor 0,3 ptos**

Problema 3. Una máquina para hacer hielo opera en un ciclo de Carnot; toma calor de agua a 0 °C y desecha calor a un cuarto a 24 °C. Suponga que 85 kg de agua a 0 °C se convierten en hielo a 0 °C. a) ¿Cuánto calor se desecha al cuarto? *valor 0,2 ptos* b) ¿Cuánto trabajo debe suministrarse al aparato? *valor 0,3 ptos* c) ¿Cuál es el coeficiente de rendimiento real? *valor 0,3 ptos*

Escoja la respuesta que mejor se ajuste. <mark>Justifíquelas brevemente</mark>. Valor 0,5 puntos cada una.

- 1) Dos vasos de agua, A y B, están a la misma temperatura. La temperatura del vaso A **se aumenta en** 12 F°, y la del vaso B en 8 K. El vaso que está a mayor temperatura es: (a) Están a la misma temperatura,
 - (b) A,
- (c) B,
- (d) No se puede saber.
- 2) De la siguiente gráfica de una máquina de Otto obtenida del lab, donde el proceso *cd* es adiabático, y

 $V_d = 1,44 \times 10^{-4} \, \text{m}^3$

 $V_c = 2.02 \ x10^{-4} \ m^3$

 $p_d = 150025 \ Pa$

 $p_c = 95501 \, Pa$

se puede deducir que:

- a) el gas es monoatómico,
- b) el gas es diatómico, c) el gas es poliatómico,
- d) con la información dada no se puede concluir el tipo de gas.
- d b
- 3) La cantidad de energía necesaria para elevar la temperatura de un bloque de cobre (c_{Cu} =386 J/kg°C) con una masa de 3 kg desde 25°C hasta 125°C es: (a) 39 kJ, (b) 115.8 kJ, (c) 390 kJ,
 - (d) $576 \, kJ$,
- (e) 761 kJ.

4) Suponga que trata de enfriar su cocina dejando abierta la puerta del refrigerador. ¿Qué sucede? ¿Por
qué? ¿El resultado sería el mismo si se dejara abierta una hielera llena de hielo? Explique las diferencias
si las hay. valor 0,4 ptos

R = 8.3145 J/mol.K = 0.0821 L.atm/mol.K 1 atm = 1.01325×10⁵Pa Datos:

Chielo= $2100 J/kg \cdot K$,	C _{vapor} = 2010 J/kg*K,	$C_{agua} = 4190 \text{ J/kg*K} = 1 \text{ (Cal/g.°C)}$
$L_{v.agua} = 2256x10^3 \text{ J/kg}$	$L_{fusion\ agua} = 334x10^3 j/kg$	

m=nM Gas monoatómico:
$$C_V = \frac{3}{2}R$$
; $C_P = \frac{5}{2}R$ diatómico: $C_V = \frac{5}{2}R$; Gas Poliatómico $C_V = 3R$

m=nM Gas monoatómico:
$$C_V = \frac{3}{2}R$$
; $C_P = \frac{5}{2}R$ diatómico: $C_V = \frac{5}{2}R$; Gas Poliatómico $C_V = 3R$

$$\gamma = C_P / C_V C_P - C_V = R$$

$$E_C = 3/2 \quad NKT \quad \text{Ecuaciones:} \quad \Delta U = nC_V \Delta T, \quad W = nRT \ln \left(\frac{V_F}{V_I}\right),$$

$$PV = nRT, \quad \Delta U = Q - W, \quad W = \int PdV \quad \Delta S = \int \frac{dQ}{T} \quad Q = mc\Delta T$$

$$Q = \pm mL$$

$$e = \frac{|W|}{|Q_H|} \quad k = COP = \frac{|Q_C|}{|W|} \quad e_{Carnot} = 1 - \frac{T_{Fria}}{T_{Caliente}}$$

$$PV = nRT$$
, $\Delta U = Q - W$, $W = \int PdV$ $\Delta S = \int \frac{dQ}{T}$ $calor$ $Q = mc\Delta T$ $Q = \pm mL$

$$e = \frac{|W|}{|Q_H|}$$
 $k = COP = \frac{|Q_C|}{|W|}$ $e_{Carnot} = 1 - \frac{T_{Fria}}{T_{Calliente}}$

Proceso adiabático:
$$P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$$
; $T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$; $\left(\frac{T_f}{T_i}\right)^{\gamma} = \left(\frac{P_f}{P_i}\right)^{\gamma - 1}$

$$T_C = \frac{5}{9}(T_f - 32^\circ)$$